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Abstract Observations of waves, currents, and bathymetric change in shallow water (<10-m depth) both
inside and offshore of a migrating inlet with strong (2–3 m/s) tidal currents and complex nearshore
bathymetry show over 2.5 m of erosion and accretion resulting from each of two hurricanes (offshore wave
heights >8 m). A numerical model (Delft3D, 2DH mode) simulating waves, currents, and morphological
change reproduces the observations with the inclusion of hurricane force winds and sediment transport
parameters adjusted based on model-data comparisons. For simulations of short hurricanes and longer
nor’easters with identical offshore total time-integrated wave energy, but different peak wave energies and
storm durations, morphological change is correlated (R2 = 0.60) with storm intensity (total energy of the
storm divided by the duration of the storm). Similarly, the erosion observed at the Sand Engine in the
Netherlands is correlated with storm intensity. The observations and simulations suggest that the temporal
distribution of energy in a storm event, as well as the total energy, impacts subsequent nearshore
morphological change. Increased storm intensity enhances sediment transport in bathymetrically complex,
mixed wave-and-tidal-current energy environments, as well as at other wave-dominated sandy beaches.

Plain Language Summary This study uses field observations and numerical simulations to
understand the impact of storm events on coastal areas. We focus on complex coastal environments, here
a tidal inlet, where the shoreline is constantly moving owing to a combination of strong waves and strong
tidal currents. Numerical simulations, verified with field observations during Hurricane Irene and Hurricane
Sandy, allow us to test how storm intensity impacts sediment transport in this complex area. Storms with high
intensity are short-lived, but have high waves (hurricanes), while storms with low intensity are longer but with
lower waves at the peak (nor’easters). Simulations suggest that high-intensity storms cause more erosion
than low-intensity storms even with identical storm energy.

1. Introduction

Accurate predictions of changes in nearshore bathymetry are necessary for managing beaches, ports, and
coastal infrastructure, as well as for planning resilient nearshore communities. Changes in nearshore bathy-
metry are pronounced during storms, when high-energy waves, wave-driven flows, and storm surge can alter
the shoreface of a beach in just days or even hours (Herrling & Winter, 2014; Lindemer et al., 2010; Miller,
1999; and many others). On decadal time scales, long-term observations of changes in shallow bathymetry
along barrier islands in the Gulf of Mexico (Morton et al., 1995; Wahl & Plant, 2015) and the East Coast of
the United States (Hapke et al., 2016; Moore et al., 2013) suggest that storm events correlate with the evolu-
tion of the coastline, with sea level rise becoming more important on time scales of centuries (Ruggiero et al.,
2010). Additionally, the enhanced shoreline changes observed in 2013 at beaches in Europe, relative to
changes observed during the previous decade, correlated with unusually energetic storm waves
(Masselink et al., 2016).

Hydrodynamic simulations of storm conditions from coupled wave and current models compare well with
observations of hurricane waves and storm surge along barrier islands and offshore of estuaries (Dietrich
et al., 2011; Lindemer et al., 2010; Mulligan et al., 2010; and many others). Further, coupled hydrodynamic
and morphodynamic models have been used in wave-dominated environments to simulate the observed
subaerial response of relatively long straight beaches to hurricanes (Dissanayake et al., 2014; Harter &
Figlus, 2017; Lindemer et al., 2010; Smallegan et al., 2016). Simulations of multiple storms on wave-dominated
sandy beaches suggest that bathymetric change scales with wave energy and that storm direction can influ-
ence patterns of erosion and deposition (Luijendijk et al., 2017; Walstra et al., 2012).

Here these previous results are extended using observations of hurricane-induced subaqueous (<10-mwater
depth) bathymetric change along a sandy shoreline with a migrating inlet. Unlike many previous studies on
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wave-dominated beaches, strong tidal currents in the inlet and in the nearshore may contribute significantly
to sediment transport.

The field observations are used to calibrate a numerical model that simulates nearshore hydrodynamics,
sediment transport, and morphological change along the southern shoreline of Martha’s Vineyard, MA
(Figure 1; Hopkins et al., 2016, 2017). Norton Point, the sand barrier separating Katama Bay from the
Atlantic Ocean, breached during a nor’easter storm in April 2007 to form Katama Inlet (Figure 1). The inlet
migrated 2.5 km eastward until it closed in 2015 (Hopkins et al., 2017; Orescanin et al., 2016). Between
2011 and 2015, tidal currents observed in Katama Inlet were as high as 2 m/s (Orescanin et al., 2016) and
tidal currents flowing through Muskeget Channel separating Vineyard Sound from the Atlantic (Figure 1)
were as high as 3 m/s (Hopkins et al., 2017). Observations at this site were used in prior studies to calibrate
and validate the numerical model Delft3D (Lesser et al., 2004) for waves and currents (Hopkins et al., 2016,
2017). Here rapid morphological evolution and associated waves and currents observed at Katama are used
to calibrate Delft3D for sediment transport. The model is applied to investigate the effects on nearshore
subaqueous sediment transport of short, highly energetic (e.g., hurricanes) and longer, less energetic (e.g.,
nor’easters) storms.

2. Observations

Simulations of measured bathymetric change focus on Hurricanes Irene and Sandy, two of themost energetic
storms to affect the East Coast of the United States in the last few decades. In 2011, Irene produced storm
surge up to 1.2 m in the Northeast (Avila & Cangialosi, 2011), and in 2012, Sandy caused inundation of over
1.8 m in similar areas (Blake et al., 2013).

To investigate the impact of these storms on Katama, bathymetry from the northern end of Edgartown
Channel (connecting Katama Bay to Vineyard Sound, north of the arrow in Figure 1) through Katama Bay
and Inlet and across the ebb shoal in the ocean to the south (Figure 1, red dotted curve) was measured with
a GPS- and acoustic-altimeter-equipped personal watercraft. The vertical resolution of the surveys is approxi-
mately 0.05 m, and the horizontal resolution is 0.10 m along transects separated by 5 (around regions of com-
plex bathymetry) to 60 m (uniform bathymetry). Surveys were conducted before (6 August 2011) and after
(30 August 2011) the passage of Hurricane Irene (28–29 August 2011) and before (2 October 2012) and after
(11 November 2012) the passage of Hurricane Sandy (30 October 2012) and a nor’easter (7–9 November
2012). The bay surface area is approximately 7.5 × 106 m2, and water depths range from less than 1 m on
the flood shoal to 10 m at the northern part of the bay (Orescanin et al., 2016).

Offshore waves measured in ~50-m depth with NOAA buoy 44097 ranged from 0.5 to 9.5 m. Waves in 12-m
depth were measured at the Martha’s Vineyard Coastal Observatory (MVCO, http://www.whoi.edu/mvco),
and currents in Katama Inlet were measured with an acoustic Doppler velocimeter with a sample volume

Figure 1. Satellite image of Martha’s Vineyard in 2011. White circles with yellow outlines indicate locations of wave (MVCO,
bottom left) and current (Inlet, middle right) sensors deployed during Hurricanes Irene and Sandy. The red dotted curve
surrounds the area surveyed before and after Hurricane Irene (similar for Sandy). The pink dotted box encompasses the
area in which sediment transport (e.g., erosion and accretion) is calculated. MVCO =Martha’s Vineyard Coastal Observatory.
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about 0.8 m above the sandy seafloor in ~2-m depth (Figures 1 and 2). Bottom pressures were corrected for
atmospheric pressure fluctuations and converted to sea surface elevation fluctuations assuming hydrostatic
pressure and using the linear dispersion relationship (Dean & Dalrymple, 1991).

3. Numerical Simulations

Waves and currents were simulated with the numerical models SWAN (Booij et al., 1999) and Delft3D-FLOW
(in 2DH mode, Lesser et al., 2004), respectively. The wave model solves the spectral action balance and
includes the effects of shoaling, refraction, and wave-current interaction. The circulation model includes
the effects of waves on currents through wave radiation-stress gradients, combined wave and current bed
shear stress, and Stokes drift. The wave and flow models were coupled such that FLOW passes water levels
and Eulerian depth-averaged velocities to SWAN and SWAN passes wave parameters to FLOW.

SWAN was run with 36 10°-wide directional bins and 37 frequency bands logarithmically spaced between
0.03 and 1.00 Hz. The model also used a depth-limited wave breaking formulation without rollers (Battjes
& Janssen, 1978), with the default value γ = Hsig/h = 0.73 (where the significant wave height Hsig is 4 times
the standard deviation of sea surface elevation fluctuations, and h is the water depth), and a JONSWAP bot-
tom friction coefficient associated with wave-orbital motions set to 0.10 m2/s3 (Hopkins et al., 2016).

The circulation model was run using the 13 most energetic satellite-generated tidal constituents (Egbert &
Erofeeva, 2002) along open boundaries, which were dominated by the M2 (~80% of the variance, with small
variation along the boundary) and N2 (~10% of the variance) constituents. In addition, the model used a free
slip condition at closed (land) side boundaries, a spatially uniform Chezy roughness of 65 m0.5/s (roughly
equivalent to a drag coefficient of Cd = 0.0023) at bottom boundaries, and default Delft3D parameters for
coupling the FLOW and WAVE models (Deltares, 2014). Second-order differences were used with a time step
of 0.15 s for numerical stability.

The wave model offshore boundary conditions are given by output from the WaveWatch3 (WW3) model
(Tolman, 2002). Results are similar if offshore wave boundary conditions are given by the 50-m-depth buoy
observations. During hurricanes, wind forcing within the model domain becomes important for accurate

Figure 2. Observed (black curves) andmodeled (red curves) (a, e) significant wave height and (b, f) wave direction at MVCO
(12-m depth), and (c, g) east-west and (d, h) north-south velocity inside the inlet mouth (~2-m depth) for Hurricanes (a–d)
Irene and (e–h) Sandy.
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simulations (see the appendix). Wind boundary data were acquired from WW3 (forced by the Global Data
Assimilation Scheme; Tolman, 2002), consistent with the WW3 wave boundary data.

Sediment transport (Van Rijn, 1993) was simulated using the modeled waves and currents. Model parameters
were set to default values with a grain size of 500 μm (based on sediment cores taken around the inlet and
bay both in 2013 and in previous studies; Anderson, 2012), except for the reference height (0.5 m), the
current-related reference concentration factor (0.25), and the wave-related suspended and bed-load trans-
port factors (0.1), which were reduced from the default values (1) that smoothed all bedforms and produced
unrealistic transport around the island.

SWAN and Delft3D-FLOW (in depth-averaged mode) were run over four nested grids with both two-way
(FLOW) and one-way nesting (SWAN). The outermost grid, with 1-km resolution, spans about 150 km along
the north and south boundaries and 100 km along the east and west boundaries. Nested in this coarse grid
are finer grids of 200-, 40-, and 13-m resolution (Hopkins et al., 2016). Large-scale bathymetry within the
model domain was obtained during 1998 and 2008 USGS surveys (Northeast Atlantic 3-arc second map,
National Geophysical Data Center, 1999, and Nantucket 1/3-arc second map, Eakins et al., 2009) and has hor-
izontal resolution of 10 to 90m. The large-scale bathymetry and the high-resolution bathymetry near the inlet
were combined on a triangular mesh of variable resolution (finest (10-m spacing) near the inlet and coarsest
(90-m spacing) in 12-m water depth), and subsequently interpolated onto each computational grid.

4. Results
4.1. Validation of Hydrodynamics

The SWAN-Delft3D wave and circulation model simulates accurately the wave heights, wave directions, and
currents observed in 12-, 7-, and 2-mwater depth (Hopkins et al., 2016), as well as the currents ranging from 0
to 2 m/s and flow structures observed from near the shoreline to the center of Muskeget Channel (Figure 1;
Hopkins et al., 2017). Here using the WW3 wind and wave boundary conditions, simulated wave heights and
directions agree with the observed wave heights (Figures 2a and 2e) and directions (Figures 2b and 2f) in 12-m
depth water during both storm events. The model also simulates the currents observed in the inlet channel
in approximately 2-m water depth (Figures 2c, 2d, 2g, and 2h). Some of the discrepancies in the simulated
east current during Irene (Figure 2c) may be owing to spatially varying currents within the inlet that change
on scales smaller than a model grid cell, especially near the observations in complex shallow bathymetry.

4.2. Validation of Morphodynamics

A wide range of metrics for model morphodynamic skill can be examined depending on the sediment trans-
port quantities of interest, although interpreting these metrics often requires site-specific knowledge (Daly
et al., 2014; Ganju et al., 2011; Luijendijk et al., 2017; Sutherland et al., 2004; andmany others). Here qualitative
metrics are used to give a sense of model skill on a case-by-case basis during storms. An accompanying quan-
titative model validation is given in the appendix.

The Delft3D numerical model results agree with the observed bathymetric changes owing to Hurricanes
Irene and Sandy. Simulated spatial patterns and amplitudes of erosion and accretion (Figures 3b and 3d)
are similar to those observed (Figures 3a and 3c). Further, the simulated bathymetric changes across and
along the inlet, along the ebb shoal, and south of the inlet are consistent with the changes observed during
the storms (cf. red with black curves in Figure 4). Some of the simulated patterns in erosion and accretion are
shifted spatially relative to the observed patterns (Figure 4), possibly owing to artifacts associated with
stretching and compressing different model prestorm and poststorm survey grids to align with larger-area
surveys outside of the inlet region (see the appendix). Thus, although themagnitude and pattern of the simu-
lated bathymetric change is consistent with the observed bathymetric change, the patterns are offset spa-
tially by up to 50 m (Figure 4; see the appendix). The comparisons of the simulations with observations of
hydrodynamics (Figure 2) and morphodynamics (Figures 3 and 4) suggest that the field-calibrated model
can be used to study morphological evolution near Katama Inlet.

4.3. Storm Intensity Impact on Morphology

Alongshore sediment transport can be scaled roughly with the wave energy incident on a shoreline, and thus,
episodic, high-wave events such as nor’easters and hurricanes shape the morphological evolution of wave
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energy-dominated nearshore environments (Herrling & Winter, 2014; Kaji et al., 2014; Walstra et al., 2013; and
many others). The effect of episodic events on mixed wave-and-current energy systems is less well known,
although recent studies at the Sand Engine in the Netherlands suggest that storm energy has a similar rela-
tionship to sediment transport in the presence of relatively weak tidal currents (<1 m/s) (Luijendijk et al.,
2017) when wave-driven currents in the nearshore approach 1 m/s (Radermacher et al., 2017). Tidal currents
observed near Katama (~3m/s around the corner of Chappaquiddick Island and ~2m/s through the inlet) can
be stronger than those observed at the Sand Engine (0.8 m/s), and wave-driven currents tend to be weaker
owing to smaller wave angles relative to the shoreline orientation (typically 1 m/s at the Sand Engine com-
pared with 0.2 to 0.9 m/s south of Katama Bay, depending on wave energy and direction). Here the field-
verified Delft3D wave-current-sediment transport model is used to determine the relative effects of short,
intense storms (e.g., hurricanes) and longer, less intense storms (e.g., nor’easters) in the mixed wave-and-
current energy Katama Inlet system.

For these idealized model simulations of storm events, the wave boundary conditions were based on obser-
vations at the 50-mwater depth waverider buoy collected during Hurricane Irene. The offshore boundary sig-
nificant wave height was modified to change the distribution of energy for Irene over time, while keeping
constant the time-integrated storm energy (proportional to wave height squared) (Figure 5a). JONSWAP
spectra at the boundary were generated based on the temporal distribution of offshore wave energy and
a range of peak periods and offshore wave directions (Figures 5b and 5c). To ensure identical numbers of tidal
cycles and tidal-current transport, all model runs were 6-days long regardless of the length of the storm peak.

Storm intensity was calculated in 12-m depth (to account for wave transformation over shallow offshore
bathymetry) by integrating the energy of the storm under its peak (where wave heights are greater than
70% of the maximum height) and dividing by the duration of the storm peak. The erosion integrated over
an area near the inlet (pink box in Figure 1, in which there was ~10% loss of sediment during the storm) after
the 6 days is used to quantify the effect of storm intensity on nearshore sediment transport. The variance in
bathymetric change and cumulative erosion and deposition have similar trends (not shown).

Figure 3. Bathymetric change (red is accretion, blue is erosion, scale on the right) for (a, c) observed and (b, d) simulated
hurricane conditions for Hurricanes (a, b) Irene in 2011 and (c, d) Sandy in 2012. The observed prestorm and poststorm
bathymetries are interpolated onto the 13-m horizontal spacing model grid. Changes less than 0.2 m are not shown.
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Figure 4. Observed (black curves) and simulated (red curves) erosion and accretion versus distance along transects located
(a, e) across the inlet mouth (blue), (b, f) along the inlet channel (black), (c, g) across the ebb shoal (red), and (d, h) south of
the inlet on the southern shoreline of Norton Point. The location of each transect is shown in the color contour plots of
bathymetric change (top) for Hurricanes (left) Irene and (right) Sandy. The normalized root-mean-square error (NRMSE) for
each comparison is listed in the lower left of the panels.
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Simulations with no wave energy (not shown) suggest that the waves
during Hurricane Irene increased erosion around the inlet by as much
as 25% relative to simulations with tidal currents alone. Previous stu-
dies indicate that this percentage will increase with higher-energy
storms (Luijendijk et al., 2017). In the idealized simulations with a range
of storm durations (Figure 6a) and maximum wave heights (Figure 6b),
erosion increases with higher storm intensity (R2= 0.60), even for iden-
tical amounts of wave energy entering the model domain (Figure 6c).
Thus, hurricanes (shorter duration, higher maximum wave height
storms) move more sand at Katama than nor’easters (longer duration,
lower maximum wave height storms) with similar overall energy.
Erosion decreases as storms become longer, but with lower peak waves
(Figure 6a), and erosion increases with maximum significant wave
height (Figure 6b), as expected in wave-dominated environments for
the formulation used here (Van Rijn, 1993), which combines transport
owing to waves (proportional to wave energy) with that owing to tidal
currents (proportional to velocity cubed). Katama is a mixed wave-and-
tidal-current energy environment, and thus, these results suggest that
in addition to tidal-current-driven sediment transport, wave-driven
transport is important during storms, with more intense storms moving
more sediment.

The trend of bathymetric change (here erosion, although results are
similar for deposition and for variance in bathymetric change) with
storm intensity is consistent with observations at the Sand Engine in
the Netherlands (Luijendijk et al., 2017). Sand Engine observations
included storms of varying offshore energy that eroded the

Figure 6. Erosion integrated around the inlet (pink box in Figure 1) versus (a) storm duration, (b) maximum storm signifi-
cant wave height, and (c) storm intensity. The dashed line in (c), which is the least squares fit between erosion and storm
intensity (R2= 0.60), is not extended to the x axis because 0 intensity is not defined for these simulations with constant
storm energy (1.6 × 106 m2).

Figure 5. Boundary conditions for storm intensity simulations, including (a) sig-
nificant wave height, (b) wave direction, and (c) wave period. The energy under
each curve of significant wave height versus time (Figure 5a) is identical to
that measured during Hurricane Irene (dark blue curve), but distributed differ-
ently over time either to enhance the maximum (peak) energy (1 1/3 times, light
blue curve) or to decrease peak energy either to 2/3 (red) or 1/2 (green) of the
original value. Offshore wave boundary conditions were a JONSWAP spectral
shape with a cos20θ directional distribution, with wave height given by the time
series in Figure 5a and coupled with a mean period and direction that were
constant for each 6-day model simulation. Simulations were run for different
wave directions (Figure 5b) and wave periods (Figure 5c) that are similar to those
observed.
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nourishment in an environment where wave-driven nearshore currents usually are greater than the local tidal
currents. The eroded volume is correlated with the integrated storm energy (Figure 7a; Luijendijk et al., 2017).
When the integrated energy of the storms is transformed into intensity by dividing by the storm duration,
observations at the Sand Engine also suggest that there is a linear relationship between storm intensity
and sediment transport if there is sufficient sediment supply (Figure 7). Despite different relative roles of
wave- and current-driven transport, the similarity of the relationship between bathymetric change and storm
intensity at dissimilar nearshore environments (cf. Figure 6c with Figure 7b) suggests that the temporal dis-
tribution of wave energy during storms can impact bathymetric change in a range of mixed wave-and-
current energy environments.

5. Conclusion

Numerical simulations (SWAN and Delft3D-FLOW) of hydrodynamics and morphological evolution on the
sandy southern shoreline of Martha’s Vineyard, MA, near the migrating Katama Inlet during Hurricanes
Irene and Sandy are consistent with measured waves, currents, and bathymetric change. Model results show
that on time scales of days to weeks, bathymetric change (e.g., erosion and accretion) increases with increas-
ing storm intensity (the total wave energy of the storm divided by the duration of the storm). Thus, the obser-
vations and simulations suggest that both total wave energy integrated over the storm duration and storm
intensity can influence morphological evolution of a sandy beach system (in this case, the migration of an
inlet). In the mixed wave-and-tidal-current energy system investigated here, storms can increase erosion
and deposition by 25% more than with tidal current alone, with short, intense storms (e.g., hurricanes) caus-
ingmore sediment transport than longer, less intense storms (e.g., nor’easters) with the same time-integrated
wave energy.

Appendix A
A1. Metrics for Validation

Similar to other 2DH numerical morphological studies (Daly et al., 2014; Ganju et al., 2009, 2011; Luijendijk
et al., 2017; Ranasinghe et al., 2011), the Brier Skill Score (BSS) is used to compare the relative skill of different
simulations. The skill score is defined in discrete form as

BSS ¼ 1� ∑ Δzo � Δzmð Þ
∑ Δzoð Þ

where Δzo is the observed and Δzm is the modeled bathymetric change. A BSS = 1 indicates perfect model
skill. A BSS < 1 indicates the simulated morphological evolution diverges from the observations. The
score can be used to examine in more detail how model and data disagree (or not) as follows (Sutherland
et al., 2004)

Figure 7. Shoreline erosion volume at the Sand Engine in the Netherlands versus (a) integrated wave energy (R2 = 0.93)
and (b) storm intensity (integrated wave energy divided by storm duration, R2 = 0.94). Figure 7a and data for Figure 7b
are from Luijendijk et al. (2017), with permission.
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BSS ¼ α� β � γþ ϵ
1þ ϵ

α ¼ cov Δzo;Δzmð Þ
σΔzoσΔzm

� �2

β ¼ ffiffiffi
α

p � σΔzm
σΔzo

� �2

γ ¼ Δzm � Δzo
σΔzo

� �2

ϵ ¼ Δzo
σΔzo

� �2

where σ is the standard deviation, cov is the covariance, and < > is an averaging operator. The term α indi-
cates how well the model simulates the location of bathymetric changes (α = 1 is perfect agreement), β indi-
cates how well the model simulates the volume of sand moved (β = 0 is perfect), γ indicates how well the
model simulates the average bed level (γ = 0 is perfect), and ϵ is a normalization term. Both forms of the
BSS are used here to compare numerical simulations with observations of bathymetric change during
Hurricanes Irene and Sandy.

A2. Irene and Sandy

Model skill, according to the BSS, is higher for Hurricane Irene than Sandy, but relatively low for each com-
pared with an ideal BSS (excellent is classified as a BSS > 0.5, good is a BSS > 0.2, and fair BSS > 0.1;
Luijendijk et al., 2017). Although the simulated bathymetric change is qualitatively consistent with the
observed changes (Figures 3 and 4), the best BSS for these runs fall into either the good or fair category.
Some of the error could be owing to the (not modeled) morphological evolution that occurred during the
times between the bathymetric surveys and the periods around the storms that were simulated. Errors also
could be owing to simplifications of model parameters, including assuming a spatially uniform grain size dis-
tribution, using a crude parameterization of bottom roughness, and initialization on the outer boundary with
simulated wave conditions from WW3.

Breaking the BSS into its components for each model run reveals that most of the error is in the α term, or the
spatial discrepancies between model and data (Figures A1 and A2). Some of the location errors may be
related to generating the model initial bathymetry by stretching the observed prestorm bathymetry (sur-
veyed in a relatively small area near the inlet) to mesh smoothly with the large-scale bathymetry (before inter-
polating onto the 13-m grid). As a result, the model bathymetry (and the simulated bathymetric change) was
distorted slightly in space relative to the surveyed bathymetry (and bathymetric change), possibly leading to
errors in the skill score. The higher model skill for Hurricane Irene than for Hurricane Sandy may be because
the spatial shift arising from putting the observed bathymetry on the model grid was reduced by the 60%
larger spatial extent of the Hurricane Irene bathymetric surveys.

Additionally, the peak of each storm occurred at different phases of the tidal cycle, which could impact the
response to the storm-force waves. However, overall bathymetric evolution during the storms did not change
significantly if the time series of waves on the boundary was shifted 6 hr, suggesting that storm timing did
not have a significant impact.

A3. Boundary Condition Calibration

Standard boundary conditions for model runs included waves (from a buoy in 50-m water depth or from
WW3 model output) and satellite-derived tidal constituents (Egbert & Erofeeva, 2002). Optional boundary
conditions include wind and atmospheric pressure during storms. Observed winds were spatially sparse
(with only one station on Martha’s Vineyard and one station on Nantucket Island for the entire model
domain), so WW3 winds were used in the model with the simulated wave conditions verified with
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Figure A2. Contours of bathymetric change (red = accretion, blue = erosion, scale on the right in (a)) owing to Hurricane
Sandy for (a) observations, (b) model simulations without wind, and (c) model simulations with wind. The Brier Skill Score is
indicated in bold (lower left) in (b) and (c), along with the components of the skill score above (α = location error and
β = magnitude error).

Figure A1. Contours of bathymetric change (red = accretion, blue = erosion, scale on the right in (a)) owing to Hurricane
Irene for (a) observations, (b) model simulations without wind, and (c) model simulations with wind. The Brier Skill Score is
indicated in bold (lower left) in (b) and (c), along with the components of the skill score above (α = location error and
β = magnitude error).
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observations. Wind coefficients in the model were left at default values. Similarly, WW3 pressure fields were
used in model simulations.

Simulated bathymetric changes for Hurricanes Irene and Sandy show significantly greater skill with the inclu-
sion of wind than without wind (cf. Figure A1b with Figure A1c and Figure A2b with Figure A2c). Including
spatially varying atmospheric pressure did not result in significant improvement in model skill (not shown).
To save computational costs, neither wind nor pressure were included in the idealized model runs, which
did not simulate a specific observed morphological change.
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